RZ 3548 (# 99559) 05/10/04
Computer Science 16 pages

Research Report

Property Attestation—Scalable and Privacy-friendly
Security Assessment of Peer Computers

Jonathan Poritz, Matthias Schunter, Els Van Herreweghen, and Michael Waidner

IBM Research GmbH

Zurich Research Laboratory

8803 Rischlikon

Switzerland
{jap,mts,evh,wmii@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

ul
"ll
> 0
3
QO
o
)
>
>
c
a4
=
vy}
@,
=
«
v
08
=)
I
D,
=
QO
—
<
5
—
0
o
>
3
Y
<
o
N
S
=
>

Property attestation — Scalable and
privacy-friendly security assessment of peer
computers

Jonathan Poritz, Matthias Schunter,
Els Van Herreweghen, Michael Waidner
IBM Zurich Research Laboratory
Zirich, Switzerland
{jap,mts,evh,wmi}@zurich.ibm.com

Abstract

A core security challenge is the integrity verification of the software that is
executed on a machine. For example, an enterprise needs to know whether a gate-
way machine has been infected by malicious code. One prevailing approach is
to use directories of configuration check-sums to detect when a configuration has
been changed (see www.tripwire.org). These software-only solutions have
limitations when the operating system itself is compromised. The tamper-resistant
Trusted Platform Module (TPM) specified by the Trusted Computing Group (TCG)
allows a TPM-enhanced platform to securely attest to a configuration of a ma-
chine. Based on such binary attestation, a verifying peer computer can then decide
whether or not to trust the verified platform.

In this paper, we argue that the approach of binary attestation is not privacy-
friendly, scalable or open and vendor-neutral. The main criticism is that this ap-
proach needlessly discloses the complete configuration (i.e., all executed software)
of a machine. The focus of binary attestation are the binaries instead of their se-
curity. We present a protocol and architecture for property attestation that resolves
these problems. With property attestation, a verifier is securely assured of security
properties of the verified platform’s execution environment without receiving de-
tailed configuration data. This enhances privacy and scalability since the verifier
needs to be aware of its few required security properties instead of an huge number
of acceptable configurations.

1 Introduction

Processing critical information relies on the security of the computing platform. Typ-
ical security goals are to prevent such critical information from leaking beyond the
realm of machines that are trusted by the user or to prevent corrupted machines from

impacting the integrity of a computation. External verification of platform integrity
enables a machine to verify that another machine meets certain security requirements.
This is useful, for example, when a grid server wants to assure that a grid node is
untampered before delegating a grid process to it.

The Trusted Computing Group (TCG) is an IT industry consortium which has de-
veloped a specification of a small, low-cost commodity hardware module, called the
Trusted Platform Module (TPM). The TPM can serve as a root of trust in remote (and
local) platform verification.® The base TCG model of this configuration verification
process, which we shall call “binary attestation”, aims at measuring all executed code.
This is done by mandating that each measured piece of software stores metrics (hash
values of the configuration’s components) of a sub-component into the TPM before ex-
ecuting it. This is boots-trapped by the BIOS that is trusted by default and measuring
and storing the boot loader. The chain of trust can then be extended to the operating
system components up to the applications and their configuration files. Once the exe-
cutables are measured into the TPM, the TPM can reliably attest to the metrics of the
executed components by signing them with a TPM-protected key. The signed integrity
metrics can then be transmitted to a verifying machine. This verifier can decide whether
to consider the machine trustworthy enough to involve it in a subsequent computation.
As we will elaborate in Section 3.3, this straightforward approach of binary attestation
lacks scalability, privacy, and openness. The main reason is that the whole configura-
tion is transmitted (limited privacy), that the verifier needs to know all configurations
of all machines to be verified (scalability), and that the verifier checks binaries that
are specific to a vendor and operating system instead of verifying security properties
(limited openness).

We propose property attestation as an alternative. The idea of property attestation
is to use TPM technology to provide a verifier with evidence of well-defined security
properties of a remote verified platform without the ability (and need) to know what
exact implementation has been used on that platform. We describe an architecture for
property attestation where a trusted verification proxy converts a platform’s integrity
metrics into high-level security properties based on property certification statements of
the measured components.

Property attestation improves scalability since a verification proxy can be specific
to the verified machine.? It resolves the privacy issues since the verification proxy hides
the configuration information. It enables openness since the same security property can
be provided by many implementations by multiple vendors.

1.1 Outlineof this Paper

The outline of the paper is as follows. § 2 summarizes related work. In § 3, we recall
the TCG’s “binary attestation’ approach focusing on reliably reporting the configura-
tion of a machine. We point out its disadvantages and motivate the need for property

INote that this article focus on the attestation function of the TPM while omitting other useful functions
like secure storage that are orthogonal to our research.

2We describe various deployment scenarios for such a verification proxy, including how it can be se-
curely implemented on the verified machine itself; the latter scenario allowing for secure self-attestation of
properties by a verified platform.

attestation. In § 4, we outline the basic idea and the interactions that are needed for
property attestation. In § 5, we describe protocols that achieve property attestation by
means of a security proxy. This security proxy performs a configuration-based security
evaluation of a given machine and reports the results (high-level security properties) to
the verifier. In § 6, we describe various deployment scenarios; in one of these scenar-
ios, the security proxy and the verified system are both deployed on a single machine,
achieving the goal of self-verification of a machine. Section 7 concludes the article.

2 Related Work

Various approaches have been described for using secure coprocessors in combina-
tion with system measurements to preserve or prove the integrity of computing plat-
forms. Secure boot implies that a system can measure its own integrity and terminate
the boot process if an integrity failure is detected. Yee [15] describes a secure boot
process where the secure coprocessor verifies loaded modules prior to their execution
against securely stored cryptographic checksums of their images. The AEGIS system
described by Arbaugh et al. [1] describes a multilevel secure bootstrap process for an
IBM PC system also allowing recovery from integrity failures. Again, cryptographic
hashes of loaded modules are compared with stored signatures before being executed;
each layer validating the integrity of the subsequent layer, starting from a trusted (as-
sumed uncompromised) portion of the BIOS.

Authenticated or trusted boot implies that a system can convince a remote verifier
of its integrity and security. The IBM 4758 secure coprocessor [3] realizes both secure
and authenticated boot; outbound authentication as described by Smith [10] allows co-
processor applications to authenticate themselves to remote parties. The bootstrapping
of trust and the linking of each layer to its predecessor is realized by the predecessor
generating a signature over the next layer’s measurement result (cryptographic hash)
as well as its public signature key.

The Trusted Platform Module (TPM) specified by the Trusted Computing Group [11,
13,12, 14] supports a trusted boot through its cryptographic functionality and protected
storage. The TPM provides the necessary interfaces for the various layers in the boot
process to securely store measurements (cryptographic hashes) of subsequent layers.
A remote verifying platform can be convinced of the correctness of these measure-
ments based on a challenge-response authentication mechanism where the TPM signs
the requested measurements.

The TCG specifications only define the trusted boot process up to the bootstrap
loader. Maintaining the chain of trust up to the application layer requires additional
support by the operating system. Sailer et al. [7] describe a TCG-based integrity mea-
surement architecture for Linux.

3 TheTCG Approach: Binary Attestation

The TCG specifications [11, 13] define mechanisms for a TPM-enabled platform to
reliably “report its current hardware and software configuration to a local or remote

Ver|f|_ed Verifier Machine Directory
Machine Servers

Config

Challenge A
Config |_ descriptors Component
w‘ Directories
(TPM_quote) Platform
Config
Config
Assessment
Measurement (TPM) Yes;No

Figure 1: TCG Attestation Architecture

challenger” [2]. This “binary attestation” (based on measurements of binary executa-
bles) is based on (1) the platform building a chain of trust from the hardware up to the
operating system (and, potentially, including applications) by measuring integrity met-
rics of modules and storing them in the TPM, and (2) the TPM being able to report on
these metrics in an authenticated way. A verifier obtaining such authenticated metrics
can then match them against the values of a known configuration and decide whether
the verified machine meets her security requirements or not.

3.1 Binary Attestation Architecture

Figure 1 represents a modularized architecture corresponding to the TCG concept of
binary attestation.
The following entities are involved in the attestation and verification process:

Verified Machine A machine that has a Trusted Platform Module (TPM) and a com-
puting base that may execute untrusted code.

Verifier Machine The machine of the verifier. All modules on this machine are known
and trusted by the verifier.

Directory Servers Servers that provide additional authenticated information about com-
ponents in signed component directories. Examples include Tripwire directories
www.tripwire.com.

We make certain definitions to speak about this architecture:
Verified Platform The computing environment on the verified machine.

TPM The Trusted Platform Module (TPM) on the verified machine. It is used by the
verified platform to store measurements of code executed in the verified platform.

Configuration Validator The module that obtains a (TPM-authenticated) measure-
ment and reconstructs the platform’s configuration. To do this, it uses a configu-

ration log file (see Section 3.2) additionally provided by the verified platform as
well as configuration descriptors certified in Component Directories.

Configuration Assessment Given a configuration, the assessment determines whether
this configuration satisfies the requirements of the verifier. This assessment typi-
cally involves matching the configuration against a set of configurations allowed
by the verifier.

Component Directory A signed repository of information related to components. An
example of a component directory is a software vendor’s database providing hash
values and associated descriptions of its latest products.

3.2 Binary Attestation and Verification M echanisms

We now explain the interactions that implement binary attestation. The ability of the
TPM reliably to report on the verified platform’s computing environment follows from
the TPM-enabled measurement and reporting. Our description in the following para-
graphs focuses on the PC-platform [2].

The measurement and storage of integrity metrics is started by the BIOS Boot
Block (a special part of the BIOS which is believed to be untampered) measuring itself
and storing the measurements in a TPM PCR (Platform Configuration Register) before
passing control to the BIOS. In the same way, the BIOS then measures option ROMs
and the Boot Loader and records these measurements in a TPM PCR before passing
control to the Boot Loader. The process continues as the Boot Loader measures and
stores integrity metrics of the OS before executing it, the OS in turn measuring and
storing integrity metrics of additionally loaded OS components before their execution.
If support by the OS is provided, applications can also be measured before being exe-
cuted.

The measurement and reporting processes are depicted in a simplified manner in
Figure 2, in which 7 represents the cryptographic hash function SHA-1. During ini-
tialization, various PCRs as well as a configuration log file (stored on the platform) are
initialized; this log file keeps track of additional information such as descriptions or
file paths of loaded components [7]; its integrity need not be explicitly protected by the
TPM. During subsequent measurement of components, this log file is extended, while
metrics (hash values) of the executables are stored in the TPM using the tpm _extend
method replacing the contents of the appropriate PCR register with the hash of the old
contents and the new metrics. We do not discuss which metrics are stored in which
PCR,; it suffices to say that metrics of loaded components are reliably stored in the
TPM.

When a remote verifier wants to assess the security of the verified platform, she
sends a challenge c to the platform. The platform uses this challenge to query (with a
tpm_quote command) the TPM for the value of the PCRs. The TPM responds with a
signed message signA,K(}ﬁ, ¢) containing the PCR values and the challenge®. The
platform returns this signed quote to the challenger (verifier) together with information

3The TCG specifications specify a quote over specific PCR values rather than the full set; for simplicity,
we assume in this discussion that a quote is always given over all PCR values.

Platform TPM

Initialization:

log := {} PCR, :=0

‘ Measure Components: ‘
measure desc; as ezec;
log := log||(desci, exec;)
m; := H(exec;)

tpm_extend(z, m;)

PCR, := H(PCR,,m;)

‘ Report Measurements: ‘

tpm_quote(c, AIK)

SignAIK (chi C)

Figure 2: TPM-Enabled Measurement and Reporting Process

from the log file needed by the verifier to reconstruct the verified platform’s configura-
tion; the verifier can then decide whether this configuration is acceptable.

The key used for signing the quote, AIK, is an “Attestation Identity Key” of the
TPM; as a TPM may have multiple AIK s, the key or its identifier has to be specified
in the tpm_quote request. An Attestation Identity Key is bound to a specific TPM;
its public part is certified in an Attestation Identity Key Certificate by a Privacy-CA as
belonging to a valid TPM.* The verifier of a quote signed with a (correctly certified)
AIK believes that the quote was produced by a valid TPM, more specifically, by the
unique TPM owning that AIK. This belief is, of course, based on the assumption
that the TPM is not easily subject to hardware attacks and that effective revocation
mechanisms are in place dealing with compromised keys.

Note that the above measurement process does not prohibit execution of untrusted
code, it only guarantees that the measurement of such code will be securely stored in
the TPM. Thus, if malicious code is executed, the integrity of the platform may be
destroyed; however, the presence of an untrusted (or simply unknown) component will
be reflected by the TPM quotes not matching the ‘correct’ or ‘expected’ values.

4In the remainder of this paper, we will always assume that the verifier of a quote is in possession of, or
can obtain, the appropriate certificate certifying the AIK but we will not explicitly represent the transport of
such certificate in protocols.

3.3 Limitationsof Binary Attestation

In settings where verified platforms have a relatively stable configuration, binary at-
testation can be a practical and efficient way of verifying the integrity of platforms.
An example may be the management of an enterprise network where managed devices
(should) have the same or one of only a limited number of configurations. In such a set-
ting, there may also be no privacy or openness problems related to platforms reporting
to their full configuration.

In less closed environments, however, binary attestation suffers from limitations of
scalability, privacy and openness that can be resolved by property attestation:

Lack of scalability Binary attestation requires the verifier to know all potential hash-
values of all (combinations of all) components of any machine that it may be
required to verify. Knowing all acceptable configurations is be hard to manage.

Privacy invasiveness The TPM defines protocols called Direct Anonymous Attesta-
tion (DAA) to anonymously prove the presence of a valid TPM. Binary attes-
tation limits this anonymity by revealing the configuration information of the
platform to the verifier. This is violates best privacy practices by revealing irrel-
evant (and likely personally-identifying) information.

Lack of openness A verifier expects a particular hash-value of a particular implemen-
tation. This fixes the implementation instead of the security properties: The
usual verifier will expect a particular implementation from a particular vendor.
This will put other implementations from other vendors at a disadvantage even
if these implementations provide the same or even a higher level of security.

The ability to attest to a platform’s properties rather than metrics can greatly improve
scalability of the attestation approach: a verifier need not know every possible accept-
able configuration; she rather wants to be assured that the platform will enforce certain
security properties (e.g., adherence to privacy policies). At the same time, property at-
testation protects the privacy of the verified platform’s owner and encourages openness
and interoperability by focusing on security properties rather than on exact implemen-
tations.

4 Property Attestation

Property attestation addresses the privacy, openness and scalability problems associ-
ated with binary attestation. With property attestation, a verifier is convinced of high-
level security properties of a remote platform without receiving the remote platform’s
configuration information. Examples of security properties are the absence of certain
vulnerabilities or the ability to enforce certain policies; security properties also include
privacy and availability statements. The SuSe www . suse . com common criteria eval-
uated Linux enterprise edition can prove that it satisfies Assurance Level EAL2+ for
the Controlled Access Protection Profile. A server farm should be able to assure a ver-
ifier that it has a high-probability of 24x7 availability. A enterprise can certify that a
given set of files belong to it’s base installation (while others do not).

\ Platform \ Verifier |

Platform Policy ‘ . Policy Matchmaking Verifier Policy
AL L] LPOTTIE YT P IS OV

Properties AN |/ Property Requirements

Privacy & Trust Policies | | Privacy & Trust Policies
Property Attestation >

™\

Services

Figure 3: High-Level View of Property Attestation

4.1 High-level View of Property Attestation

Figure 3 depicts property attestation at a high level. The verifier and verified platform
engage in a protocol to prove that the platform satisfies the verifier’s security require-
ments. If the verifier is satisfied with the offered properties, they can engage in the
exchange of services.

The actual properties offered are determined by a matchmaking process between a
verifier policy and a platform policy. The term policy stands for a collection of static
and/or dynamic security and privacy requirements, trust assumptions and properties:

e The verifier policy includes the verifier’s property requirements as well as the
trust policy describing which entities she trusts for signing or certifying certain
property-related statements. A verifier may trust a software distributor to state
correct product information in a component directory (e.g., which binaries be-
long to which product), but may not trust the distributor for certifying security
properties about the software. In our architecture in Section 4.2, security prop-
erty certification will be performed by property certifiers. In addition to having
a trust policy, a verifier may have a privacy policy specifying, for example, to
whom she wants to disclose security requirements and trust policy contents.

e The platform policy includes the properties that can currently be assured by
the platform, as well as privacy and trust policies specifying which information
(properties or configuration) can be disclosed to whom.

The matchmaking and negotiation process between verifier and platform policies can
differ depending on the entities involved. The question is what portions of the lo-
cal policies are communicated? Individuals are often reluctant to reveal their privacy
policies while enterprises are often reluctant to reveal their trust policies and property
requirements. We envision the following scenarios:

B2C If a business platform wants to prove its properties to a consumer, it will reveal
what properties can be offered under what trust policy. The consumer then lo-
cally decides whether this satisfies his requirements. The consumer does not
reveal any information.

Verified Verification Directory Servers
Machine Proxy Canf -
3: Measurements | Config - descriptors Component 1
(TPMquote) | | Validator Directory ;
= o
) | Property | | Property i
H Reauest || Validator | Confg | Cerifier |
'y assurance
Measurement (TPM) 1: Platform 4: Platform certificates
verification assurance
request status
A

Machine Verifier

Figure 4: Property Attestation Architecture: Actors and Basic Message Flows

C2B If a business verifies a consumer platform, it will send its trust policy while the
consumer platform then proves the corresponding properties.

B2B If a business verifier verifies a business platform, it will reveal its trust policy
while the business platform responds with the properties that can be guaranteed
under this trust policy.

In practice, proving properties and revealing (parts of) policies can be an iterative pro-
cess Where parties gradually build up trust as in [8, 9, 16, 17].

In the following sections, we will focus on the C2B scenario with simple privacy
policies: the verified platform’s privacy policy simply forbids that the verifier receives
actual PCR measurements; and the verifier is willing to reveal her trust policy but
not her specific security requirements. The verifier is thus willing to send her trust
policy and the verified platform attests to the properties it can assure under that trust
policy. These assumptions will allow us to illustrate the core concepts of property
attestation; a description of a generic matchmaking process for complex privacy and
trust policies is not within the scope of this paper. An example of a more complex
platform privacy policy may be not to attest to any property if the verifier’s trust policy
is too restrictive; e.g., if a verifier’s trust policy specifies trust in only a single software
vendor, then attesting to a high-level property under that restrictive trust policy reveals
that the verified platform is running only software from that vendor.

4.2 Property Attestation Architecture

Figure 4 shows the component architecture of a property attestation system. New parts
of the property attestation architecture are:

Property Certifier An agent that describes (and certifies) which security properties
are associated with which component. Example include manufacturers that cer-
tify properties of their products (such as offering certain services), evaluation

; Component
Veﬂf;f;l:(P\l/?fOfm | Measurements ~_ - Config Descriptors = Directlories
et bl " (cD,, ...,CD,)
i Verifier :
Privacy / non-discl | i
rivacy / non-disclosure | (VP, AIK, CD.I,...CD‘, |
A4 | PC,..PC) :
Verification Prox s e
(VP) Y [ntegrity —-——- e Property certs —-———-——j] Certifiers
(PC,, ..., PC)

Figure 5: Trust Model for Property Attestation: Entities and Keys (bold identifiers
denote key-pairs)

authorities that certify their evaluation results (such as common criteria assur-
ance level for a given protection profile), or enterprises or other owners of the
machines that self-certify the code that they deem acceptable.

Verification Proxy Towards the verified platform, the verification proxy acts as a ver-
ifier of binary attestations; towards the verifier, it acts as the verified platform
in the high-level property attestation view of Figure 3. When receiving a plat-
form verification request by the verifier, it challenges the verified machine for
integrity measurements. These measurements are then transformed into a plat-
form configuration through configuration validation, and subsequently into plat-
form properties through property validation. The property validation is based
on property certificates (binding components and configurations to properties)
issued by property certifiers.

Property Verifier This module engages with the property prover in the property at-
testation exchange. Its requirements are based on the verifier policy (property
requirements and trust policy) that it requires as an input.

4.3 Property Attestation Trust Model

We outline certain deployment-dependent security assumptions that are made by our
design. In section 6 we show how to guarantee that they are satisfied.

The verification proxy is a core component of the design. The verified platform
(or its user/owner) needs to trust in its integrity (correct operation and authenticated
channel) and confidentiality (confidential channel and no information leakage) in order
to guarantee privacy. The verifier needs to trust in the integrity of the verification proxy
in order to believe the properties that the verification proxy outputs. In addition, the
verifier needs to know a verification proxy signature key (public/private key pair) that
are used by the verification proxy to authenticate its verification results.

Figure 5 depicts the trust model for property attestation. Each entity is shown to-
gether with the public signature verification keys that it needs to know. Bold identifiers
represent key-pairs of the entity. The arrows in the figure represent trust relations be-
tween entities (or, in fact, trust policies associated with public keys): The Verified Plat-
formowns an attestation identity key AIK and knows the verification proxy’s (public)

10

TPM Platform Verification Proxy Verifier

challenge ¢
¢, AlK, TPy
(—
authvp(C,A|K)
(7
¢, AIK
(_

qu = signA”((PCﬁ, c)
_—

confyp (log, qu)
_

verify log
reconstruct binary config ¢
derive properties prop*
from config ¢
authyp (prop®, ¢, AIK, TPy)
>

verify prop-
erties

prop”

Figure 6: Property Attestation Protocol

key VP. Ittrusts the owner of VP to protect the confidentiality of its measurements. In
the simplified privacy policy model discussed in § 4.1, the verification proxy is thus the
single entity to which the verified platform wants to send configuration information.
The Verification Proxy owns its signature key-pair VP. Each Component Directory i
owns a key-pair CD; with which it certifies configuration descriptors. Each Property
Certifier 7 owns a key-pair PC'; with which it certifies properties related to (sets of)
components. The Verifier knows knows the platform identity (public) key AIK of the
platform about which it wants to receive property attestation; it trusts that measure-
ments authenticated with that key correctly represent the configuration of the platform
based on the TPM certified with AIK (even though he does not see them). The veri-
fier also knows VP and trusts the integrity of property attestations with that key. The
verifier trusts configuration descriptions authenticated with CD ;. ; and property cer-
tificates authenticated with PC; ;.

5 Property Attestation Protocols

We now describe the protocol for property attestation based on the above trust model;
it is represented in Figure 6. The exchange is triggered by the verifier who requests
to receive property attestation about the platform associated with AIK. We name the
protocol steps corresponding to the names of basic message flows and components in
Figure 4.

11

Platform Verification Request The verifier sends a message to the verification proxy
which contains a randomly generated 160-bit challenge (honce) ¢, the attestation
identity key AIK about which she wants property attestation, and her trust pol-
icy TPy . As mentioned in § 4.1, we assume that the verifier does not protect
the privacy of her trust policy; we also assume that the verifier receives all the
properties the verified platform can guarantee under this trust policy.

Measurement Request Using an authenticated channel, the verification proxy for-
wards challenge and AIK to the verified platform. The platform decides whether
or not to continue based on its policy and trust model. We assume the platform
knows VP as the key of a trusted verification proxy and continues by requesting
a TPM quote. Note that the challenge used between verification proxy and plat-
form (and TPM) need not be the same as the challenge used between verification
proxy and verifier. Indeed, it is up to the verification proxy alone to judge the
correctness and freshness of the actual TPM quote.

TPM Quote Request/Response The platform requests and receives the AIK -authenticated
quote using the challenge.

M easurements The platform sends the quote and the log-file to the verification proxy
using a confidential channel (described below).

Config Validation The verification proxy can now reconstruct the platform’s configu-
ration using the authenticated metrics (PCR quote), the log file and (potentially)
config descriptors certified by keys within TP, .

Property Validation The verification proxy derives properties of the platform’s com-
ponents based on property certificates certified by keys within TP .

Platform Property Status The verification proxy returns an authenticated message
containing the Platform Verification Request and the properties that can be as-
sured. The verifier checks whether this response is authenticated with a key
which her policy considers to belong to a trusted verification proxy. If so, she
trusts that the properties returned can currently be guaranteed by the platform
associated with AIK under TPy .

Note that the protocol assumes that the security of the verification proxy is guaran-
teed. In addition, we assume that messages from the verification proxy to the platform
and the verifier are authenticated while messages from the platform to the verification
proxy are kept confidential (denoted by auth and conf, respectively). How this will be
guaranteed depends on the deployment and will be described in Section 6.

Note that more complex privacy policies (e.g., the verified platform also protect-
ing which properties can be proved to which verifiers under which trust policy) may
require also authentication by the verifier of the initial request message, as well as
confidentiality protection of the verification proxy’s response to the verifier.

We assume that high-level security properties about a platform can be guaranteed
only if all components on the platform are measured; this assumes that the measure-
ment process as depicted in Figure 2 continues up to the application level. Thus the

12

verification proxy should not attest to any properties unless it can convince itself that
the verified platform’s configuration indeed supports that extended measurement.

6 Deployment Scenarios

In previous sections, we assumed the existence of a key pair VP used by the verification
proxy for authenticating messages as well as the establishment of a confidentiality-
protected channel with the verified platform. Verified platform as well as verifier were
assumed to trust this key to belong to an untampered and correct verification proxy.

In this section, we now outline different deployment scenarios achieving the above
goals. Each scenario enables the verification proxy to establish an authentic channel
and to communicate confidentially with the verified platform and provides guarantees
to the verifier and the owner of the verified platform that the verification proxy is un-
tampered.

6.1 Verification Proxy on a Dedicated Machine

The verification proxy can be deployed on a dedicated TPM-enabled machine and con-
vince other parties (verifier and verified platform) of its own integrity through binary
attestation.

If we assume that there are only a few approved standard configurations of veri-
fier proxy platforms, we can expect the “verification proxy verifier’ (the platform or
the verifier in the property attestation) to know a set of acceptable verification proxy
configurations, say { PCR;, ..., PCR,}. The verification proxy can now prove its
trustworthiness with a TPM quote (using a validly certified AIK) attesting to such an
acceptable configuration:

SignAIKVP (PCE%7 C)

The key used for authentication and key distribution in property attestation protocols
can then either be AIKyp or another key protected by the TPM and which can be
shown to be associated with AIK v p.

For efficiency reasons, it is recommended that the dedicated machine also stores
recent copies of the directories with certified material (property certificates and com-
ponent certificates).

A special case of this deployment is a verification proxy owned by the owner of the
verified platform itself. E.g., the platform owner is a company, verified platforms are
employee machines, and the verification proxy is the company’s firewall hiding details
of employee machines’ configuration towards company-external property attestation
verifiers.

6.2 Self-Attestation: Verification Proxy on the Verified Platform

The idea here is to deploy the verification proxy on the verified platform itself (see
Figure 7). This effectively implements a self-verification of the platform. Recent mi-
crokernels allow to execute multiple operating system instances on a single machine

13

Platform Proxy .
(Compartment) (Compartment) Machine

Verified Verification Verifier
Property Attestation

Measurement Service | Measurement Service

[

Microkernel

Figure 7: Deployment of Property Attestation on a Microkernel-Enabled Platform

[5, 6]. On such platforms, the TPM can be virtualized such that each compartment has
its own virtual TPM [4]. This mechanism can be used to execute two TPM-enabled
machines on the same piece of hardware. The deployment is then essentially identical
to the two-machine deployment. Since the microkernel usually provides services for
secure messaging, authentication and encryption is not needed for messages between
the verification proxy and the platform.

As described in the two-machine case, the verifier is required to verify the integrity
of the verification proxy using binary attestation. In this case, the scope of this verifi-
cation would be the compartment that executes the verification proxy, while the con-
figuration of the compartment executing the platform is not disclosed. This verification
would be based on the services provided by the virtual TPM in the compartment where
the verification proxy is executed.

7 Conclusion and Open Problems

We have shown how property attestation can resolve the scalability, privacy and open-
ness issues raised by straightforward binary attestation using TPM hardware. Unlike
this binary attestation, property attestation provides an open method to guarantee in-
tegrity (or trustworthiness) to a verifier, while enabling many secure implementations.

An open problem is the exact negotiation of the security guarantees that a platform
needs to offer. Verification of whether a machine meets certain security requirements
under a given trust policy can have have different flavors: The first is that the verifier
discloses nothing and asks the prover machine to explain what properties can be guar-
anteed under what trust policy. The second is that the verifier sends her trust policy
(who is trusted to certify what) to the remote platform and the remote platform then
self-verifies and returns the security properties that can be guaranteed under this trust
policy. The third alternative is to send the security requirements including the trust
policy to the remote platform. The remote platform self-verifies and answers whether
it can or cannot meet these security requirements.

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap
architecture. In Proc. 1997 IEEE Symposium on Security and Privacy, pages

14

65—71. IEEE Computer Society Press, 1997.

[2] B. Balacheff, L. Chen, S. Pearson, and G. Proudler. Trusted Computing Plat-
forms. TCPA Technology in Context. Prentice Hall International, 2003.

[3] J. G. Dyer, M. Lindemann, R. Sailer, L. Van Doorn, S. W. Smith, and S. Weingart.
Building the IBM 4758 secure coprocessor. |IEEE Computer, 34(10):57-66, 2001.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtual
machine-based platform for trusted computing. In ACM Symposium on Operating
Systems Principles (ASOSP), pages 193-206. ACM Press, 2003.

[5] H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. Performance of
p-kernel-based systems. In 16th ACM Symposium on Operating System Princi-
ples (SOSP), St. Malo, France, October 1997. ACM Press.

[6] B. Pfitzmann, J. Riordan, C. Stble, M. Waidner, and A. Weber. The perseus sys-
tem architecture. Technical Report RZ 3335 (#93381) 04/09/01, IBM Research
Division, 2001.

[7] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation
of a TCG-based integrity measurement architecture. Technical Report RC23064,
IBM Research Division, Jan. 2004.

[8] K. Seamons, M. Winslett, and T.Yu. Limiting the disclosure of access control
policies during automated trust negotiation. In Proc. 2001 Symposiumon Network
and Distributed System Security, San Diego, CA, Apr. 2001. Internet Society.

[9] K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting privacy
during on-line trust negotiation. In Worhshop on Privacy-engancing Technologies
(PET2002), San Francisco, CA, April 2002. Springer LNCS.

[10] S. W. Smith. Outbound authentication for programmable secure coprocessors. In
Proc. 2002 European Symposium on Research in Computer Security (ESORICS),
pages 72-89, 2002.

[11] The Trusted Computing Group. Main specification version 1.1b, 2003. Available
from http://www.trustedcomputinggroup.org.

[12] The Trusted Computing Group. TPM main version 1.2 part 1 design principles,
2003. Available from http://www.trustedcomputinggroup.org.

[13] The Trusted Computing Group. TPM version 1.2 specification changes, Oct.
2003. Available from http://www.trustedcomputinggroup.org.

[14] The Trusted Computing Group. Writing TCG enabled trusted applications, 2003.
Available from http://www.trustedcomputinggroup.org.

[15] B. Yee. Using secure coprocessors. Technical Report CMU-CS-94-149, Carnegie
Mellon University School of Computer Science, May 1994.

15

[16] T. Yu, X. Ma, and M. Winslett. PRUNES: an efficient and complete strategy for
automated trust negotiation over the internet. In Proc. 2000 ACM Conference on
Computer and Communications Security, pages 210-219. ACM Press, 2000.

[17] T.Yu, M. Winslett, and K. E. Seamons. Interoperable strategies in automated trust
negotiation. In Proc. 2001 ACM Conference on Computer and Communications
Security, pages 146-155, 2001.

16

